388 research outputs found

    Simulation of a finishing operation : milling of a turbine blade and influence of damping

    Get PDF
    Milling is used to create very complex geometries and thin parts, such as turbine blades. Irreversible geometric defects may appear during finishing operations when a high surface quality is expected. Relative vibrations between the tool and the workpiece must be as small as possible, while tool/workpiece interactions can be highly non-linear. A general virtual machining approach is presented and illustrated. It takes into account the relative motion and vibrations of the tool and the workpiece. Both deformations of the tool and the workpiece are taken into account. This allows predictive simulations in the time domain. As an example the effect of damping on the behavior during machining of one of the 56 blades of a turbine disk is analysed in order to illustrate the approach potential

    Evaluating the feasibility of Cas9 overexpression in 3T3-L1 cells for generation of genetic knock-out adipocyte cell lines

    Get PDF
    Cell lines recapitulating physiological processes can represent alternatives to animal or human studies. The 3T3-L1 cell line is used to mimic adipocyte function and differentiation. Since transfection of 3T3-L1 cells is difficult, we used a modified 3T3-L1 cell line overexpressing Cas9 for a straightforward generation of gene knock-outs. As an example, we intended to generate 3T3-L1 cell lines deficient for adhesion G protein-coupled receptors Gpr64/Adgr2 and Gpr126/Adgr6 using the CRISPR/Cas approach. Surprisingly, all the generated knock-out as well as scramble control cell lines were unresponsive to isoprenaline in respect to adiponectin secretion and lipolysis in contrast to the wild type 3T3-L1 cells. We, therefore, analysed the properties of these stable Cas9-overexpressing 3T3-L1 cells. We demonstrate that this commercially available cell line exhibits dysfunction in cAMP signalling pathways as well as reduced insulin sensitivity independent of gRNA transfection. We tried transient transfection of plasmids harbouring Cas9 as well as direct introduction of the Cas9 protein as alternate approaches to the stable expression of this enzyme. We find that transfection of the Cas9 protein is not only feasible but also does not impair adipogenesis and, therefore, represents a preferable alternative to achieve genetic knock-out

    Genomic basis for skin phenotype and cold adaptation in the extinct Steller’s sea cow

    Get PDF
    Steller’s sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller’s descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller’s sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller’s sea cows’ reportedly bark-like skin. We also found that Steller’s sea cows’ abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction

    Machine Learning for Mathematical Software

    Get PDF
    While there has been some discussion on how Symbolic Computation could be used for AI there is little literature on applications in the other direction. However, recent results for quantifier elimination suggest that, given enough example problems, there is scope for machine learning tools like Support Vector Machines to improve the performance of Computer Algebra Systems. We survey the authors own work and similar applications for other mathematical software. It may seem that the inherently probabilistic nature of machine learning tools would invalidate the exact results prized by mathematical software. However, algorithms and implementations often come with a range of choices which have no effect on the mathematical correctness of the end result but a great effect on the resources required to find it, and thus here, machine learning can have a significant impact.Comment: To appear in Proc. ICMS 201

    All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data

    Get PDF
    Since the recent detection of an astrophysical flux of high energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over seven years from 2008--2015. The discovery potential of the analysis in the northern sky is now significantly below EÎœ2dϕ/dEÎœ=10−12 TeV cm−2 s−1E_\nu^2d\phi/dE_\nu=10^{-12}\:\mathrm{TeV\,cm^{-2}\,s^{-1}}, on average 38%38\% lower than the sensitivity of the previously published analysis of four years exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.Comment: 19 pages, 17 figures, 3 tables; ; submitted to The Astrophysical Journa

    Search for astrophysical sources of neutrinos using cascade events in IceCube

    Get PDF
    The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5σ5\sigma. This flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from May 2010 to May 2012. We show that compared to the classic approach using tracks, this statistically-independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations â‰Č−30∘\lesssim-30^\circ.Comment: 14 pages, 9 figures, 1 tabl

    Neutrinos and Cosmic Rays Observed by IceCube

    Full text link
    The core mission of the IceCube Neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux, and constrains its origin. In addition, the spectrum, composition and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of IceCube data, and their implications on our understanding of cosmic rays.Comment: Review article, to appear in Advances in Space Research, special issue "Origins of Cosmic Rays
    • 

    corecore